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ABSTRACT

Imaging sensors and automatic target recognition (ATR) al-
gorithms are an integral part of modern combat systems.
We present a method to automate the efficient synthesis
of hyperspectral images used as aid in the evaluation and
development of ATR algorithms. To ensure reliable in-
ferences from these processes, it is required that the dif-
ferent levels of difficulty for ATR performance are ade-
quately represented in the generated images. We employ
the Digital Imaging and Remote Sensing Image Genera-
tion (DIRSIG) software for the image synthesis, and model
each image as a function of the input parameters needed for
the image synthesis. The computational complexity of im-
age generation makes gradient-based, and similar adaptive
schemes inappropriate for sampling this multidimensional
function. We present a progressive adaptive sampling al-
gorithm based on the equalization of the histogram of the
already obtained samples. The algorithm requires no prior
knowledge of how the images vary with the inputs used
in their synthesis, and the computational overhead is min-
imal. The images generated with the aid of this algorithm
are compared to those generated from a combination of ran-
dom, and even spaced input parameters to DIRSIG. An im-
provement in diversity with respect to ATR performance is
recorded for the images generated using the adaptive sam-
pling algorithm.

1 INTRODUCTION

Synthesized hyperspectral images have been successfully
used as aid in the evaluation and development of imaging
sensors and related algorithms. Such images have been
used in the design stages to pre-evaluate the imaging
products from a sensor (Lentilucci et al. 1998), serve as
test data for algorithm design either because real data is
not available (Arnold et al. 2000; Shi and Healey 2003),
or to augment when it is limited (Schott et al. 1997). Our

objective is to synthesize hyperspectral images to be used
in the development of a clutter complexity metric. Such a
metric will be an indication of the intrinsic difficulty for an
automatic target recognition (ATR) algorithm to identify
a target in an image. It is derived as an aggregation of
statistical image features, that correlates best with baseline
ATR performance. The feasibility of this approach has
been shown in previous work (Fadiran and Kaplan 2004;
Fadiran et al. 2006b).

In obtaining the described clutter metric, a training
process is employed in deriving the selection and com-
bination of image features that correlate best with a
baseline ATR performance. This requires the availabil-
ity of a statistically representative set of images. The
question of representation is two-fold, that of fidelity
on a per image basis, and the need for an adequate
number of images at the different levels of difficulty for
target detection by an ATR. This works addresses the latter.

We employ the Digital Imaging and Remote Sensing
Image Generation (DIRSIG) (Schott et al. 1999) software
for the image synthesis. Each synthesized image may be
seen as a function of the input parameters needed for its
generation. Some of these may include time of day, season
of year, atmospheric profile between the imaging device
and the scene etc. The aim is to sample this multidimen-
sional space, such that there is maximum diversity in the
synthesized images with respect to ATR detection perfor-
mance. There is inadequate prior knowledge of how this
performance varies with these input parameters, especially
when they are combined. Also, synthesizing these images
is generally computationally expensive. As a solution to
sampling this function, we present a progressive adaptive
sampling algorithm. The algorithm requires no prior
knowledge of how the images vary with the inputs used in
their synthesis, and the computational overhead is minimal.
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In the next section, we describe the process of image syn-
thesis. We also introduce our adaptive sampling scheme
and explain how it aids efficient image generation. Sec-
tion 3 details our experimental setup, then shows and dis-
cusses the results. We conclude by highlighting our find-
ings, and making suggestions for further work.

2 HYPERSPECTRAL IMAGE DATABASE
GENERATION

2.1 Image Synthesis Model

The Digital Imaging and Remote Sensing Image Gener-
ation (DIRSIG) model has be been used for generating
multi- and hyperspectral images in the 0.3 to 20 micron
region (Schott et al. 1999). It is an integrated collection
of first principle based sub-models that account for scene
geometry, atmospheric contributions, illuminating sources,
and properties of materials in the imaged scene. After these
factors are established, a ray-tracing process is employed
in rendering the scene. The process of synthesizing images
using DIRSIG is well documented (Digtial Imaging and
Remote Sensing Laboratory 2006).

Hyperspectral images are cubes of data in which two
of the dimensions are spatial, and the third dimension is
spectral. The spectral information is particularly useful
when there is a limitation on the spatial resolution that can
be obtained. Using multi-spectral ATR algorithms, objects
in hyperspectral scenes that span less than one pixel can
be identified from their spectral signatures. Generally,
the approach of multi-spectral ATR algorithms focuses
on the spectral rather than the spatial information in the
images (Landgrebe 2003).

The spectral signature of a material in a synthesized im-
age depend on the input parameters DIRSIG. The effect
that these factors have on the signature also depends on
the region of the electromagnetic spectrum that is being
considered. Some factors have been determined to cause
more significant changes in the regions of the spectral sig-
natures for which we generated images - the visible to near
infrared (0.35 - 1.0 nm). Some of these factors are: time of
day, range of visibility, atmosphere profile type etc. (Land-
grebe 2003). A further constraint is imposed on our choice
of factors by the adaptive sampling algorithm that we use
as aid in the image synthesis process: their values must be
monotonically increasing or decreasing in magnitude. This
requirement will be explained in the subsection that de-
scribes the adaptive sampling scheme. We identified three
of these factors to form a 3-dimensional space as described
in the introduction. Each generated image is then a result
of the combination of these factors as inputs to the DIRSIG
model. These factors and the ranges in the dimensions that
they represent are:

• Minute of day (1-1440 minutes)

• Day of year (day 1-365)

• Visibility parameter (0-40km)

While our choice of factors for this work is based on ex-
perience with generating these types of images, this frame-
work can also be used for identifying the significance of
other factors and their ranges. The emphasis in this work is
the establishment of the framework in which the adaptive
sampling is used as aid in the image generation process.

2.2 Efficient Image Database Generation

The computational complexity of image generation makes
gradient-based, and similar adaptive schemes inappropriate
for sampling the described multidimensional function.
This is because the number of generated samples usually
has to be kept at a minimum. There is a need for an
adaptive sampling scheme that is able to efficiently sample
the function with no prior knowledge of how the function
changes with the independent variables it depends on, in
this case, the image synthesis input parameters. Such a
scheme should also be able to achieve this with minimal
computational overhead. As a solution, we have devel-
oped an adaptive scheme that fulfils these requirements,
namely, the Adaptive Sampling by Histogram Equaliza-
tion (ASHE) (Fadiran et al. 2006a) algorithm. This is
a progressive adaptive sampling scheme in which the
subsequent sample locations are determined based on the
state of the distribution of an objective value associated
with the function in question. We have shown that progres-
sively sampling to achieve a uniform distribution in the
objective function value, results in the efficient distribution
of samples. That is, a higher density of sample points in
regions of relatively higher complexity in a function.

The objective function value associated with each image
was determined by the performance of an idealized ATR,
this served as our baseline. The function value at any
sampled point was represented as the false alarm rate at
an arbitrarily set threshold. The same threshold was used
throughout the work.

Simulated active walkers (Helbing et al. 1997) are
employed as samplers, and their steps at each stage of the
process is determined by the state of the distribution of
already collected function values. Their locations in the
space are the sampled points. Obtaining a distribution of
the already sampled function values at each stage is the
only computational overhead incurred.

The described algorithm has been shown to achieve two
purposes that are apparently equivalent: efficient distri-
bution of sample points by avoiding regions of relatively
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lower complexity, and improving diversity in distribution
of sampled function values.

The listing in Algorithm 1 shows how the ASHE
algorithm aids the efficient generation of hyperspectral
images.

Multiple active walkers are employed in the process to
ensure that there is an initial even spread of the starting
sample locations. There is however a needed trade-off
between the required initial spread of samples and the
number of steps that is taken by each walker. Obviously,
the greater the number of steps that can be taken, the more
the distribution will tend towards the uniform. Sampling
with a single walker to maximize the number of steps
may result in the walker remaining in a local region of the
function. Since in this case the state of the distribution will
only be dependent on local function values, the algorithm
only attempts to obtain a uniform distribution of the values
in this sub-domain. The use of multiple walkers ensures
that the state of the distribution is based on function values
in the whole domain. For this work, 5 active walkers were
employed to obtain n = 125 samples, each walker taking
(n− 5)/5 = 24 steps in the process.

The short, and long steps are defined as functions
of the size of the space being sampled. Thus, the
short step = α × N , and long step = β × N , where
α and β have been determined empirically to be 0.04
and ≥ 0.3 respectively. N in this case is a 3-element
vector, with elements equal to the lengths of each of the
dimensions that make up the space. The algorithm is less
sensitive to changes in β, since any value ≥ 0.3 results in
a movement away from the vicinity of the original location.

Changes in the state of the distribution of the function
values determine whether a long or short step is taken by a
walker. These changes were computed as the mean squared
error between the distribution, and a uniform distribution
with the same number of bins. This value tends towards
0 as the distribution moves towards the uniform. Thus, if
a sample addition to the distribution causes a reduction in
the error, a short step is taken by the walker that obtained
the sample, a long step is taken otherwise.

Note that, since there has to be a correlation between
the step sizes of the active walkers in the input parameters
space, and their sample contribution to the distribution. It
is thus required that the input parameters be monotonically
increasing or decreasing. Otherwise, the step sizes become
of no effect, and their movement will be essentially
random.

A self-avoidance mechanism (Rodnick and Gaspari

2004) is implemented to ensure that no location is sampled
multiple times. A marker is placed on every previously
sampled location, and a walker that falls into this location
moves to another close sample location. In this case,
the walker moves in unit step sizes in all dimensions, in
a random direction, until a location that has not being
sampled is reached.

3 EXPERIMENTS

We generate hyperspectral images according to the urban
scene from the DIRSIG tutorial (Digtial Imaging and
Remote Sensing Laboratory 2006) by varying the three
factors identified in Subsection 2.1. One band from this
imaged scene is shown in Figure 1.

Figure 1: A single band (λ = 0.56 nm) from the hyperspec-
tral image of the urban scene. The spatial size is 128×128
pixels. The arrow indicates the region cropped as target.

We generate different images from this scene by keeping
other input parameters constant while varying the three
input parameters that make up the multi-dimensional
space. The arguments to DIRSIG are contained in a series
of parameter files. These files contain the values of the
factors that determine the nature of the synthesized images
amongst other information. The 3-dimensional coordinates
of an active walker are written into the appropriate param-
eter files that serve as input to DIRSIG. The algorithm is
implemented with a MATLAB script.
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Algorithm 1 Synthesizing hyperspectral images using the ASHE algorithm
Initial definitions:

objective function - False Alarm Count (FAC)
factors that the Objective function is dependent on - 3 identified in Section 2.1
range and possible values that these factors can take - also listed in ” ”

Sampling initialization:
obtain initial random locations in 3-dimensional space using active walkers
synthesize images for combination of factors from these locations
compute FAC from initial sample image points
compute normalized histogram from initial sample FAC values

while no. of synthesized images ≤ required no. of images do
for all active walkers do

obtain new sample point in multi-dimensional space
if location has already been sampled

obtain different but ’close’ sample point
end if

synthesize new image based on active walker position
(arguments to DIRSIG are coordinates of active walker position)

add new image sample from active walker to existing images
compute FAC for new image addition
compute new normalized histogram of FAC values after single addition, and

compare to previous histogram
if histogram tends to normalized uniform distribution

single walker takes short† step size in random direction
else single walker takes long‡ step size in random direction
end if

end for
compute new overall normalized histogram

end while

The values of the † - short, and ‡ - long step sizes are functions of the size of the space being sampled.

We synthesize a set of images using a random com-
bination of these parameters, and another set using
combinations of factors that are evenly spaced within
their possible ranges. We compare these to the set of
images generated by the set of factors determined by the
adaptive sampling algorithm. Each of the sets consists
of 125 images, 128×128pixels, and 44 equally spaced
spectral bands spanning 0.35-1.0nm. Each image takes
about 26 minutes to synthesize on a Pentium IV Linux PC
with a 3.2GHz processor.

In order to establish a baseline ATR performance, we
implemented a normalized, multi-spectral matched filter
ATR via the Adaptive Coherence Estimator (ACE). This
ATR is idealized, as it uses a spectral signature of a target
in question as a template. The resulting ACE statistic
is bounded between 0 and 1 and is described in (1), in
which s ∈ <L and x ∈ <L are the target template and

pixel under test respectively, and L is the number of bands
in the hyperspectral image. The vectors s and x may also
be composed of multiple pixels in the spatial dimension.
In this case, 2-dimensional averages of the target and
test pixels are taken in the spatial dimensions to obtain
column vectors of the previously stated lengths. R̂b, with
dimensions L × L is an estimate of the covariance matrix
of the background (Li and Michels 2004). The false alarm
count at an arbitrary, but constant threshold serves as a
measure of our ATR baseline performance. This is the
objective function value associated with each synthesized
image.

ACEstatistic =
|sTR̂−1

b x|2

(sTR̂−1
b s)(xTR̂−1

b x)
(1)

As the image generation process progresses, the baseline
ATR performance of the existing images is computed, and
the ASHE algorithm attempts to equalize the histogram
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of these values. It does this by moving the active walkers
away from regions that will result in the generation of
images with false alarm values that already have adequate
representation, to regions that will result in images that
have lower or no representation.

The false alarm count (FAC) is also computed for the
sets of images synthesized by a random combination of
these factors, and those synthesized using combinations of
factors that are evenly spaced within their possible ranges.
These image sets are then compared to the adaptively
synthesized images on the basis of representation across
the range of FAC values. This is determined as the
range between the minimum, no false alarm count, to
the maximum of all FAC values recorded from the three
methods used for image synthesis. By representation, we
refer to each bin having at least one image so that an ATR
algorithm test on the database would have considered all
levels of difficulty. The images are also considered based
on the distribution among the different levels of difficulty.
That is, a measure of the uniformity in the distribution of
images across the different levels of difficulty so that ATR
algorithm tests are not biased by over-representation in a
particular category of difficulty.

Figure 2 shows the spread of representation over the
defined FAC value range, and the levels of representation
for each FAC value. There are 106 possible FAC values in
the range. As shown by the count of the number of bins
with at least 1 image representation, the image set gener-
ated using the adaptive algorithm show representation of
more FAC values than the other two methods. Note that,
none of the methods produce images that have FAC values
between 0 and 33. This is due to the threshold value used
to determine the false alarm rate for the images. A higher
value will result in lower FAC values for all three methods.

A comparison of the normalized versions of these
histograms to a normalized uniform distribution with the
same number of bins, shows that there is a more even
distribution of the FAC values from the image set obtained
using the ASHE algorithm. As an objective measure
of this, we compute the mean squared deviation of the
histograms from a normalized uniform distribution with
the same number of histogram bins.

4 CONCLUSION

Our main objective is to synthesize hyperspectral images
that are diverse with respect to ATR performance. We
identify factors that contribute to variations in hyperspec-
tral images, and model a synthesized image as a function
in a multi-dimensional parameter space. Without prior
knowledge of how images vary with change in these fac-

tors, the typical approaches are either to synthesize images
using a random combination of these factors, or using
a combination of factors that are evenly spaced within
their possible ranges. These methods are not efficient if
there are regions in the parameter space that cause more
variations in the resulting image than others. Rather,
regions of change need to be sampled more densely. On
the other hand, the computational expense of synthesizing
images is prohibitive for gradient based adaptive sampling
algorithms. In order to efficiently sample this space to
generate images that are diverse with respect to ATR
performance, we sample the space using an Adaptive Sam-
pling algorithm based on Histogram Equalization (ASHE).
The algorithm directs the image synthesis process, such
that there is a spread of representation in the values that
are indicative of ATR performance. Images synthesized
using the ASHE algorithm performed better than those
synthesized using a random combination of factors, and
those generated using a combination of factors that are
evenly spaced within their possible ranges when compared
on the basis of spread and equality of representation within
the ranges of values indicative of ATR performance.

We are currently experimenting with other models to
achieve histogram equalization. We also continue the
development and use of the ASHE algorithm to identify
parameters, and combinations of them that are most
significant for variation in images. In general, this scheme
can be used for any kind of synthesized data sets to ensure
diversity or completeness in representation.
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